April 28th, 2017

scannen00044scannen00051scannen0006scannen00071scannen0008scannen00092scannen00101

Die Anwendung einer allgemeinen Dampfdruckdifferentialgleichung

Juli 28th, 2016

dd12dd22dd3dd4dd5dd6dd7dd8dd9dd10dd111

Die Zustandsgleichung zur Berechnung thermophysikalischer Daten nahe am kritischen Punkt

Juli 7th, 2016

vol19

vol22vol32vol42

vol5vol6

Die Auswertung und Anwendung kritischer Phänomene der Theoretischen Physik

Juni 16th, 2015

Die Bestimmung der Stoffeigenschaften von Flüssigkeiten und Gasen in der kritischen Region  eines Stoffes ist mit besonderen Schwierigkeiten verbunden.  Die Ursache dieser Schwierigkeiten ist letzlich das Eintreten kritischer Phänomene, die in der kritischen Region  nicht den klassischen van der Waals- Teilchenwechselwirkungen entsprechen. Auf neue sich aus der physikalischen Theorie kritischer Phänomene ergebende Möglichkeiten ist hinzuweisen. Sie ergeben sich u. a.  aus Untersuchungen zur Festlegung kritischer  Exponenten mit völlig neuen Ergebnissen. Es zeigt sich auf der Grundlage dieser neuen Möglichkeiten, daß nun pvT- Daten auch im kritischen Gebiet mit erfreulicher Genauigkeit nur durch Rechnung wiedergegeben werden können. Das betrfft die pv- Werte auf der kritischen Isotherme und auf Isothermen unterhalb und oberhalb nahe der kritischen Temperatur und auch Näherungen für die unterhalb der kritischen Temperatur bestehenden Sättigungsvolumina v′, v′′ für Flüssigkeit und Dampf.

Da die Vermessung von pvT- Daten in den kritischen Bereichen von Stoffen schwierig, aufwändig und teuer ist, gibt es gar nicht so viele aus Stoffdatenbanken abrufbare Ergebnisse.  Allerdings sind z. B. in der web-site “nist webbook” für etliche technisch wichtige Stoffe Ergebnisse mit den wahrscheinlich gegenwärtig am besten geeigneten überwiegend  empirischen Zustandsgleichungen mit “Java” abrufbar.  Auch für die jeweilige kritische Region geben die in “nist webbook” verwendeten Zustandsgleichungen pvT- Daten an. Allerdings betonen die verschiedenen Autoren immer wieder die Feststellung: “The Uncertainties are higher….”.  Trotz der labortechnisch mit Aufwand erfaßten Stoffdaten besteht die Einschätzung, daß mit den verwendeten weitgehend empirischen herkömmlichen  Zustandsgleichungen im kritischen Gebiet die Realität mit nur größeren Fehlern beschrieben wird.

Sehr interessant ist nun ein Vergleich der Ergebnisse, die  sich für die kritische Isotherme eines Stoffes mit den neuen sich aus der physikalischen Theorie kritischer Phänomene  abgeleiteten Gleichungen und den bisherigen weitgehend empirischen Zustandsgleichungen ergeben. Es zeigt sich die in der Größenordnung der Werte weitgehende Übereinstimmung. Eigentlich ist dabei unklar, welcher der berechneten Werte der Realität mehr entspricht. Allerdings ist auf einen sehr wichtigen Unterschied hinzuweisen: Die neuen aus der physikalischen Theorie kritischer Phänomene folgenden Gleichungen benötigen nur allein die Kenntnis der kritischen Daten eines Stoffes, während bisherige Zustandsgleichungen neben zusätzlichen Meßwerterfassungen auch in der kritischen Region außerdem noch Anpassungsrechnungen der Meßwerte an die vorausgesetzte Zustandsgleichung erfordern.

Ergebnisse der Berechnung von Volumina auf  der kritischen Isotherme eines Stoffes  oder in ihrer  Nähe bei vorgegebenem Druck sind bereits als Beispiele für etliche Stoffe in Artikeln dieses Bloggs im Vergleich zu Werten mit herkömmlichen empirischen Zustandsgleichungen genannt (s. z. B. Berechnungen des Verlaufs kritischer Isothermen/ September bis Oktober 2014 für Propylen, Wasser, Kohlenstoffdioxid, Methanol, Deuterium, Benzol, Wasserstoff, Helium u.a.).

Leider sind dem Autor keine weiteren pvT- Datenangaben bekannt, die qualitativ durch Meßwerte im kritischen Bereich ähnlich der “nist webbook”- Datenbank belegt sind. Es ist deshalb sehr wünschenswert, durch Meßwerte erfaßte pvT- Daten des kritischen Bereichs von weiteren Stoffen zu erhalten, um eine Nachrechnung mit den neuen aus der Theorie kritischer Phänomene nun vorliegenden Berechnungsgleichungen zum Ergebnisvergleich vornehmen zu können.

Aus den zur Theorie kritischer Phänomene durchgeführten Untersuchungen ergeben sich in Bezug auf das Verhalten von Flüssigkeiten wichtige Ergebnisse. Auch Flüssigkeiten besitzen ein pvT- Verhalten. Längst ist das nicht so ausgeprägt wie das von Gasen, da sich das Volumen viel weniger mit Druck und Temperatur ändert. Bei genauer Betrachtung aber, muß die Temperatur- und Druckabhängigkeit des Volumens (z.B. die Abhängigkeit des Sättigungsvolumens von der Temperatur)  berücksichtigt werden. Dafür aber gibt es bisher kaum praktikable Theorie- Ansätze auf einer physikalisch begründeten Basis. Alle bisherigen Ansätze zu einer allgemeinen Theorie der Flüssigkeiten gehen letztlich immer vom jeweiligen Molekülaufbau, von den zwischenmolekularen Wechselwirkungen, von molekulartheoretischen Ansätzen der Quantenmechanik und Statistischen Thermodynamik bis hin zur Statistik mit Monte- Carlo- Modellen usw. aus. Die gesuchte Aussage zu einer möglichst allgemeinen Erklärung und mathematischen Fassung der Druck-Volumen- Temperatur- Eigenschaften von Flüssigkeiten wurde so bisher nicht gefunden.

Aus der physikalischen Theorie kritischer Phänomene ergibt sich nun aber eine Zustandsgleichung als eine Näherung speziell für Flüssigkeiten, die keineswegs nur in der kritischen Region, sondern auch für Temperaturen weit unter der kritischen Temperatur  gilt. Damit kann nun das mit zunehmendem  Druck sich verringernde Volumen einer Flüssigkeit entlang einer Isotherme bzw. anderer Zustandsänderungen berechnet werden- auch wenn diese Effekte klein sind. In der Gemischthermodynamik spielen diese Effekte aber eine weit größere Rolle. Es ist darauf hinzuweisen, daß nun mit Zustandsgleichungen speziell für Flüssigkeiten auch völlig  neue Ansätze zur Thermodynamik von Mischungen entstehen. Mit herkömmlichen Zustandsgleichungen für Stoffgemische speziell zur Erfassung der flüssigen Phase sind oft große Schwierigkeiten verbunden, die bis heute nur mit hohem meßtechnischen und empirischen Aufwand für technische Belange gelöst werden müssen.

Die für Flüssigkeiten bestehenden Zustandsfunktionen haben zur Erklärung und Beschreibung des Verhaltens von Flüssigkeiten nur den kritischen Punkt eines Stoffes mit seinen kritischen Phänomenen als Ausgangspunkt, indem die sonst nur in einem engen Bereich um die kritische Temperatur gültigen Gesetze kritischer Phänomene auf Temperaturen weit unterhalb der kritischen Temperatur übertragen werden konnten. Das bedeutet, dass  Flüssigkeitseigenschaften allein nur mit den kritischen Daten eines Stoffes und seiner Temperatur festgelegt sind und auch so als Näherung berechnet werden können.

Wegen der nun für Flüssigkeiten und realen Gasen auf Grundlage der Theorie kritischer Phänomene  bestehenden pvT- Zustandsfunktionen ergibt sich durch Anwendung des Maxwell- Kriteriums sogar die Möglichkeit, die Sättigungsvolumina v’ und v” von Stoffen für Flüssigkeit und Dampf speziell in der kritischen Region in Abhängigkeit von der Temperatur als Näherung zu berechnen. Solch eine Möglichkeit bestand bisher gar nicht. Die Theorie und die Berechnungen dazu sind  durchaus kompliziert. Eine kurze zusammenfassende Erklärung ist im Artikel “Die Bestimmung der Sättigungsvolumina von Flüssigkeit und Dampf in der kritischen Region von reinen Stoffen” dieses Bloggs vom 30.Oktober 2014 gegeben (mit Rechenergebnissen für verschiedene Stoffe im Vergleich zur Datenbank “nist webbook”).

Da auf der Grundlage der zu kritischen Phänomenen durchgeführten Untersuchungen Näherungen zur Bestimmung der Volumina von Flüssigkeit und Dampf in Abhängigkeit von der Temperatur und des Drucks  bestehen, können nun auch die sogen.  Realgasfaktoren  Z = pv/RT  eines Stoffes  als Temperaturfunktionen  im Sättigungszustand als auch allgemein als Funktion des Drucks und der Temperatur berechnet werden. Dazu müssen nur die kritischen Daten eines Stoffes und ein pvT- Datentripel bei niedrigen Dampfdruck und entsprechend niedriger Temperatur bekannt sein (z. B. beim normalen Siedepunkt).

Auf die folgenden Veröffentlichungen des Autors, die die Thermodynamik von Flüssigkeiten und Gasen allgemein und speziell in der kritischen Region von Stoffen betreffen, ist hinzuweisen:

-“Stoffwerte von Flüssigkeiten und Gasen- berechnet mit Gesetzmäßigkeiten kritischer Phänomene”, ISBN 978-3-00-027253-0, 2009

- “Die Berechnung von Druck- und Volumendaten reiner Stoffe”, ISBN 3-00-015256-3

- “Neue Berechnungsmöglichkeiten thermophysikalischer Daten für reine Stoffe und Gemische”, ISBN 3-00-018592-5, ISBN 978-3-018592-2.

Oktober 30th, 2014

scannen00073scannen00083scannen00091

Oktober 16th, 2014

scannen0006

Oktober 15th, 2014

scannen0004

Oktober 14th, 2014

scannen0003

Oktober 12th, 2014

scannen00025

September 28th, 2014

scannen0014